
Bluetooth Mesh Models
Technical Overview

Author: Martin Woolley

Version: 1.0

Revision Date: 27 March 2019

Bluetooth® technology is a wireless standard with agreed, formal specifications
that support global interoperability between devices from different
manufacturers. The same thinking went into Bluetooth mesh. Luminaires, sensors,
switches, and other types of devices just work when installed in a state-of-the-art
smart building, with interoperability assured.

Interoperability is a benefit of standardization across every layer of the entire
communications stack — from the physical layer, dealing with the analogue world
of radio at the bottom, to user level behaviors that products may exhibit at the
top. The Bluetooth mesh specifications define those product behaviors in terms
of granular, standard building blocks called models. This paper provides a guided
tour of Bluetooth mesh models.

2

Revision History

Version Date Author Changes

1.0 27 March 2019 Martin Woolley Initial Version

3

table of
contents
1.0 What is a Mesh Model? . 5

 1.1 State 5

 1.2 Categories of Models 6

 1.3 Model Communication and Behaviors 6

 1.4 Software Developers and Bluetooth Mesh Models 6

2.0 Overview of Mesh Models . 12

3.0 A Guided Tour of Foundation Models 14

 3.1 The Configuration Server and Client Models 14

 3.2 The Health Server and Client Models 14

4.0 A Guided Tour of Generic Models 15

 4.1 The Generic OnOff Client and Server Models 15

 4.2 The Generic Level Client and Server Models 15

 4.3 The Generic Power OnOff Client, Server,
 and Setup Server Models 17

 4.4 The Generic Power Level Client, Server,
 and Setup Server Models 18

 4.5 The Generic Battery Client and Server Models 20

 4.6 The Generic Location Client, Server,
 and Setup Server Models 21

 4.7 The Generic Default Transition Time Client
 and Server Models 22

 4.8 The Generic Property Client and Server Models 22

4

table of
contents (cont.)

5.0 A Guided Tour of Lighting Models 24

 5.1 Lighting Overview 24

 5.2 Lighting Concepts 25

 5.3 The Light Lightness Client, Server, and
 Setup Models 26

 5.4 The LC Client, Server, and Setup Models 27

 5.5 Light CTL Client, Light CTL Server, Light CTL
 Temperature Server, and Light CTL Setup 30

 5.6 The Light HSL Client, Server, and Setup Models 32

 5.7 The Light xyL Client, Server, and Setup Models 33

6.0 A Guided Tour of Sensor, Scene, and Time Models 35

 6.1 The Sensor Client, Server, and Setup Models 35

 6.2 Time, Scenes, and Scheduling 38

7.0 Summary . 41

 7.1 Additional Resources .41

5

1.0 What is a Mesh Model?

As noted in the Bluetooth mesh glossary of terms, a model:

“...defines a set of States, State Transitions, State Bindings, Messages, and
other associated behaviors. An Element within a Node must support one

or more models, and it is the model or models that define the functionality
that an Element has. There are a number of models that are defined by the
Bluetooth SIG, and many of them are deliberately positioned as “generic”
models, having potential utility within a wide range of device types.”

The glossary and the Bluetooth Mesh Technology Overview are recommended reading if any of these
terms are new to you.

Essentially, models are specifications for standard software components that, when included in a
product, determine what it can do as a mesh device. Models are self-contained components and
products will incorporate several of them. Collectively, from a network’s point of view, models make
the device what it is.

1.1 State

Models contain states. States are data items that indicate the condition of the device, such as on/off
or high/low. States may be simple, containing only a single value, or composite, containing multiple
fields, similar to a struct in programming languages like C.

In some cases, there are relationships defined between state items. These relationships are called
state bindings. A state binding indicates that if one of the states in the relationship changes, then the
other one needs to have its value recalculated. Sometimes state bindings are conditional and may be
enabled or disabled by some other state. Developers must implement the required logic for any state
bindings that are defined for the models they are using and ensure that logic is executed
whenever required.

Conversely, where state bindings are not explicitly defined in the Bluetooth Mesh Model
Specification, states must act independently. For example, if the generic on/off state indicates that
a device is currently off, increasing the generic level state should have no user-discernible effect.
Switching the device on by setting the generic on/off state to 1 should not only switch the device
on, but it should begin functioning at the level that has been set. This can be readily understood if
you consider a rotary dimmer switch that is rotated to change the level of the lights in the room but
can also be pressed to switch them on or off. You can rotate the control when the lights are off and
nothing will appear to happen, but if you then press the switch, with it in the same rotated position,
the lights will come on at the selected level of brightness.

back to contents

1.2 Categories of Model

Models are classified as being either clients, which do not contain state, or servers, which do. State is
the term used for a data item which represents the condition that some aspect of a device is in, such
as whether it is on or off or what level it is turned up to.

Some server models are associated with another server model with a name that is similar but includes
“SetUp” in it. For example, the Sensor Server model has an associated Sensor Setup Server model.
SetUp server models are technically no different to other server models in that they contain a state
and produce and consume particular types of messages. Their purpose is to allow the separation of a
model’s configuration settings from the main model state items so that distinct access control policies
can be applied. It is common to allow a network administrator to configure a model’s associated
settings via its SetUp Server model but not allow standard users to do this.

1.3 Model Communication and Behaviors

Models talk to each other by sending and receiving messages. There are numerous types of message,
and these are defined as part of the specification for each model so that it is clear what types of
message a model can produce and what types of message it can receive and understand.

Messages either communicate a state value to other devices or they change a state value, eliciting a
response, often visible, from a device.

Models defined by the Bluetooth Special Interest Group (SIG) in the Bluetooth Mesh Model
Specification are known as Bluetooth SIG models. Vendors may define their own models too, and
these are known as vendor models. Vendor models should be used with caution and only when there
is no possible way to use Bluetooth SIG models to meet the requirements.

Models can have specified dependencies on other models. A model may extend another model, a
process whereby the first model adds states to the
second model. A model may also require that a
model which extends it be present. Models that do
not extend other models are known as root models.

1.4 Software Developers and Bluetooth
Mesh Models

Object Orientation

Software developers should find it easy to imagine
model specifications as being akin to classes in the
object-oriented (OO) software engineering paradigm
and model implementations in code inside a device
as an instance of the model or object.

The Bluetooth mesh specifications do not
stipulate any particular approach to implementing
models in code; that’s left to the developer and

6

back to contents

node

element

model model

state state

state

state

element

model model

state state

state

Note: a model is sometimes owned by multiple elements

Figure 1 — Node Composition

7

the programming language and APIs in use. But models do lend themselves to an object-oriented
approach, and the specification even talks about one model extending another, a concept that is also
reminiscent of OO.

SDK Variations

There are a number of SDKs (software developer kit) for developing mesh firmware. Some are from
Bluetooth module vendors that are specific to creating code for their modules. Others, such as
the Zephyr RTOS SDK, are hardware agnostic and allow for the creation of firmware for numerous
different target boards. At this time, Zephyr supports 100 different target boards.

Whatever SDK you use, the principals involved in implementing mesh firmware will be the same. In
this paper, code created with the Zephyr SDK will be presented as a way of illustrating points from a
developer’s point of view.

back to contents

// models - an array of specific model definitions
static struct bt _ mesh _ model sig _ models[] = {
 BT _ MESH _ MODEL _ CFG _ SRV(&cfg _ srv),
 BT _ MESH _ MODEL _ CFG _ CLI(&cfg _ cli),
 BT _ MESH _ MODEL _ HEALTH _ SRV(&health _ srv, &health _ pub),
 BT _ MESH _ MODEL(BT _ MESH _ MODEL _ ID _ GEN _ ONOFF _ SRV,
generic _ onoff _ op,
 &generic _ onoff _ pub, NULL),
 BT _ MESH _ MODEL(BT _ MESH _ MODEL _ ID _ GEN _ LEVEL _ SRV,
generic _ level _ op,
 &generic _ level _ pub, NULL)};

// elements - contains arrays of SIG models and vendor models (none in
this case)
static struct bt _ mesh _ elem elements[] = {
 BT _ MESH _ ELEM(0, sig _ models, BT _ MESH _ MODEL _ NONE),
};

// node composition - contains an array of elements
static const struct bt _ mesh _ comp comp = {
 .elem = elements,
 .elem _ count = ARRAY _ SIZE(elements),
};

8

Node Composition

One of the first key tasks a mesh firmware developer must undertake is to define their product’s mesh
node composition. This means defining in code how many elements the node has and what models
each of the elements contains. Figure 1 on page six shows the relationships between the node, its
elements, the models contained within elements, and the items of state that each model contains.

Details will vary across SDKs, but using the Zephyr SDK node composition involves creating a series
of arrays, each of which contains structs defined by macros that the SDK provides. It might look
something like the example above that shows four models belonging to an element, which is the sole
element of the node.

Properties

There are two forms that data items can take in a Bluetooth mesh model.

State values are members of particular models and have a value with a meaning that the specification
defines. They are not self-describing, and the state a message relates to is inferred from the opcode
of the message.

Properties, on the other hand, are instances of characteristics to be interpreted in a given context.

Characteristics are also used with GATT. A characteristic defines the fields its value consists of, such
as permissible values and their meaning and, in the case of GATT, includes an explicit type identifier
in the form of a UUID (universally unique identifier). When used in GATT, characteristics are members
of services, and the service that owns a characteristic provides a context within which to interpret
and work with the characteristic. For example, the Alert Level characteristic can be a member of
either the Link Loss service or the Immediate Alert service. The meaning of the characteristic varies
depending on which service it is a member of, and this is defined in the GATT service specification.

Bluetooth mesh does not use GATT services. Instead, properties provide context for interpreting a
related characteristic:

 “The Temperature 8 Characteristic is a type which represents a
temperature measurement, has a format of uint8, and uses units of 0.5
degrees Celsius. Several properties are defined for this characteristic, thus
allowing it to be interpreted in various contexts. The Present Indoor
Ambient Temperature property indicates that the Temperature 8
characteristic should be interpreted as being a measurement which was
taken indoors, whereas the Present Outdoor Ambient Temperature
property relates to measurements taken outdoors, and the Present Ambient
Temperature property is not specific about the type of location, and this is
left to be derived from other location properties.”

back to contents

9

Properties are explicitly identified by a Property ID. In a model where a property is in use, the
property ID and property value comprise the value of a state. For example, the sensor data state
contains one or more pairs of property ID and a corresponding sensor value.

Properties allow the same model to be used with a wide range of data types, which, in the case of
models like the sensor server model, is hugely advantageous since any type of sensor data can be
handled and interpreted with respect to any context, provided a suitable property has been defined.
Without this approach to describing and encapsulating data, many different types of sensor models
would be required, or the sensor server model would need to have a large number of states for each
of the different types of sensor data it might need to support.

Client and Server Decoupling

When implementing models, it is important to respect the fact that client models and server models
must know nothing about each other’s implementation details. For example, a server should not need
to know or choose to exploit knowledge of the specific values that a client might be able to send.
Each is a black box to the other.

Coding Models

Apart from specifying which models belong to each element in node composition, what else do
developers need to do to incorporate the models that have been selected for their product? In some
cases, nothing at all. Some models like the health server model are mandatory (in the primary element
of a node, which all nodes have), and the SDK may provide a complete implementation, which is
easily incorporated in the node’s composition.

In most other cases, a number of other steps will be necessary:

back to contents

#define BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ GET BT _ MESH _ MODEL _
OP _ 2(0x82, 0x01)
#define BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ SET BT _ MESH _ MODEL _
OP _ 2(0x82, 0x02)
#define BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ SET _ UNACK BT _ MESH _ MODEL _
OP _ 2(0x82, 0x03)
#define BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ STATUS BT _ MESH _ MODEL _
OP _ 2(0x82, 0x04)

// each array member contains opcode, min msg len, handler function
static const struct bt _ mesh _ model _ op generic _ onoff _ op[] = {

{BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ GET, 0, generic _ onoff _ get},
{BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ SET, 2, generic _ onoff _ set},

 {BT _ MESH _ MODEL _ OP _ GENERIC _ ONOFF _ SET _ UNACK, 2,
generic _ onoff _ set _ unack},

BT _ MESH _ MODEL _ OP _ END,
};

10

1. RX Message Handler Functions
The opcodes of messages associated with each model and which the node might receive (RX) must
be registered and, one or more functions for handling those message types, implemented. Here’s
what that looks like in Zephyr code above.

Messages received by a model either change a state value (set) or request that the current value of a
particular state be reported in a status message (get). Set messages come in two forms: those that do
not require a response (unacknowledged) and those that require the new state value to be sent back
in a status message. The term set is sometimes used to mean either of these two variations.

When handling state changes produced by set messages, developers must ensure that any defined
and active state bindings are processed, recalculating other dependent state values as required.

2. TX Message Producer Functions
Models almost certainly need to transmit (TX) messages as well as receive them. Functions that
formulate mesh messages and use the appropriate API to send messages need to be written and their
execution triggered by suitable events or device interactions, such as the user pressing buttons or
turning knobs. Developers will be largely concerned with the access layer part of messages rather
than those fields that are related to lower layers of the stack, though there can be exceptions. It may
be necessary to explicitly increment the SEQ field to avoid having devices reject messages as forming
part of a suspected replay attack, or the software framework may do this automatically.

3. Bind Application Keys to Models
All mesh messages are encrypted and authenticated using AES-CCM. Header fields are also
obfuscated to make network-pattern-analysis attacks difficult. Fields from upper layers of the stack
are encrypted using an application key, and fields from lower in the stack are encrypted using a
network key. This separates network and application security and allows nodes to perform network
functions, such as the relaying of messages without needing or having the ability to decrypt the
application payload of the message.

A good mesh software framework automatically secures messages through encryption and
obfuscation, using the network and application keys established when the device was provisioned. But
a node may have several application keys, and each must be associated with specific models through
a process known as key binding. This ensures that the stack knows which application key to use with
which types of message. Developers will almost certainly need to perform explicit application key
binding in their code. On Zephyr, application key binding looks like this:

back to contents

/* Bind to generic level server model */
err = bt _ mesh _ cfg _ mod _ app _ bind(net _ idx,

addr,
addr,
app _ idx,
BT _ MESH _ MODEL _ ID _ GEN _ LEVEL _ SRV,
NULL);

11

net_idx and app_idx are index values that reference specific keys from the list of one or more network
and application keys that a node might have been equipped with when initially provisioned
and configured.

Application key binding is the basis for access control in a Bluetooth mesh network. Issuing the
network administrator with the application key bound to the sensor setup server model gives that
user the ability to update that model’s state and configure the associated sensor server model. Other
users, not in possession of this application key, cannot configure the sensor setup server.

back to contents

12

2.0 Overview of Mesh Models

The standard Bluetooth SIG models are defined in a dedicated specification called the Bluetooth
Mesh Model Specification. In this specification, you will find extensive and rigorous information on
each of the 52 standard mesh models.

generics
· generic onoff client
· generic onoff server
· generic level client
· generic level server
· generic default transition time client
· generic default transition time server
· generic power onoff client
· generic power onoff server
· generic power onoff setup server
· generic power level client
· generic power level server
· generic power level setup server
· generic battery client
· generic battery server
· generic location client
· generic location server
· generic location setup server
· generic admin property server
· generic manufacturer property server
· generic user property server
· generic admin property server
· generic property client

time and scenes
· time client
· time server
· time setup server
· scene client
· scene server
· scene setup server
· scheduler client
· scheduler server
· scheduler setup server

sensors
· sensor client
· sensor server
· sensor setup server

lighting
· light lightness client
· light lightness server
· lightness setup server
· light CTL client
· light CTL server
· light CTL setup server
· light HSL client
· light HSL server
· light HSL setup server
· light xyL client
· light xyL server
· light xyL setup server
· light LC client
· light LC server
· light LC setup server

Figure 2 - The Bluetooth Mesh Models

back to contents

13

back to contents

What can we learn about mesh models from Figure 2? First, there are four groups of models: the
generics, models for sensors, models for lighting, and models concerned with time and a mesh
automation feature called the scene. If you review the lists in Figure 2, you will also find that every
client model has a corresponding server model and vice versa and that some server models have a
corresponding setup server model too.

Generally, models are optional. Developers implement those models that equip their products
with the mesh capabilities they need. But there are two models whose inclusion is mandatory and,
collectively, these models are the heading of the foundation models.

14

3.0 A Guided Tour of Foundation Models

The foundation models are concerned with enabling the configuration and management of the
Bluetooth mesh network and the devices it contains. There are two sets of foundation models and
these are described in the Bluetooth Mesh Profile Specification.

3.1 The Configuration Server and Client Models

All devices need to be configurable. Implementing the configuration server model is therefore
mandatory and provides the device with the ability to be configured, typically using a smartphone
application that will implement the configuration client model.

The configuration server model contains a significant number of states that allow various aspects of a
device to be configured. The device’s overall composition is held within a state called the Composition

Data state. The destination address to use when publishing messages and other parameters relating
to periodic message publication; the addresses subscribed to; and which, if any, of the special relay,
friend, low power node, and proxy roles a device may play are all part of the configuration
model’s data.

Typically, developers only need to ensure the configuration server model is part of their device’s
firmware. The configuration data comes from a configuration client application, usually at the same
time the device is provisioned to equip it with security cases. However, sometimes developers
explicitly perform part of the device’s configuration from within their code.

3.2 The Health Server and Client Models

The health models are concerned with fault reporting and diagnostics. The primary element of all
nodes in a Bluetooth mesh network must include the health server model. Other elements may inform
the health server model of faults. A series of fault-related states, such as current fault, are defined for
the health server model. Faults are represented by single octet codes. Some values in the available
range are reserved for Bluetooth SIG use and others are for vendor specific codes. Table 4.2.1 in the
Bluetooth Mesh Profile Specification identifies the standard fault codes defined by the Bluetooth SIG.

back to contents

15

4.0 A Guided Tour of Generic Models

The generics collection of Bluetooth mesh
models are designed to be used by any
kind of device, offering a set of common,
generally applicable capabilities. As Figure
3 shows, there are 22 generic models
relating to 8 states.

4.1 The Generic OnOff Client and
Server Models

At a Glance

The generic onoff models make it possible
for one device to switch other devices on
or off.

About These Models

The server model contains one state only:
the generic onoff state. This is a simple
boolean state that indicates whether an
element is currently switched on or off. A
value of 0x00 means it is off, and a value of

0x01 means it is on. The generic onoff client may send generic onoff get, generic onoff set, or generic
onoff set unacknowledged messages. It must be able to receive and handle generic status messages
if it is able to send get or set (acknowledged) messages.

4.2 The Generic Level Client and Server Models

At a Glance

Some devices can be turned up or down; lights can be dimmed and the temperate of a room can be
increased by turning up the thermostat. The generic level models allow control to be exercised over
the level of other devices.

About These Models

The generic level server model contains a
state called generic level that can be positive
or negative and has a range of -32,767 to
+32,767.

Different products may need to approach
level control in different ways, such as from
a user interface point of view. Imagine a
9-position rotary switch like the one in
Figure 4a.

back to contents

generics
· generic onoff client
· generic onoff server
· generic level client
· generic level server
· generic default transition time client
· generic default transition time server
· generic power onoff client
· generic power onoff server
· generic power onoff setup server
· generic power level client
· generic power level server
· generic power level setup server
· generic battery client
· generic battery server
· generic location client
· generic location server
· generic location setup server
· generic admin property server
· generic manufacturer property server
· generic user property server
· generic admin property server
· generic property client

Figure 3 - The Bluetooth Mesh Models

Figure 4a (left) - A 9 x Position Rotary Switch

Figure 4b (right) - Analogue Rotary Control

16

Consider the similarities and differences between this type of level controller, with its 9 fixed choices
of position and an analogue rotary control that allows the position to be set anywhere through a
continuous range.

In either case, the control needs to implement the generic level client model.

The fixed position control in Figure 4a must divide the positive generic level value range into 9
equally spaced bands, mapping its 9 selectable levels to the generic level state values defined by the
Bluetooth Mesh Model Specification. The values delineating the bands (0, 3641, 7282, 10922, 14563,
18204, 21845, 25485, 29126) are the level values sent in generic level set messages from the device.

It might be tempting to think that the rotary control in Figure 4b will not need to perform this kind
of value mapping, but it too will deliver values at a certain level of granularity and magnitude to the
firmware of the device it is a part of, and they will need mapping to the generic level state’s value
range in an appropriate way.

Changing Levels

Several ways of changing generic level are supported by the generic level models’ set and set
unacknowledged messages.

Generic level set - changes the generic level state to an absolute value.

Generic delta set - changes the generic level state by a relative, positive, or negative amount.

Generic move set - initiates changing the generic level state in either a positive or negative
direction and at a given speed. The speed with which the transition takes place is calculated from

 a delta level field in the message and a value known as the transition time. Transition time must
either appear in the generic move set message itself, where it is an optional parameter, or be
available in a state called the generic default transition time, which belongs to the generic default

transition time model which may or may not be present. If transition time is not available from
either of these two sources, the operation will not be executed and generic level will not

be changed.

The move transition may continue indefinitely. It will stop if a move set message with the delta

 level field set to zero is received. When generic level reaches its upper or lower limit, during a
move transition, the implementation may decide to either terminate the transition at that point or
take some other action, such as wrapping around and continuing.

Each of generic level set, generic delta set, and generic move set support the optional fields delay and
transition time.

The delay field allows the client to inform the server to defer execution of operation for a period of
time after receiving the message. This can be helpful in synchronizing operations that affect multiple
receiving devices.

Transition time is used to calculate the speed with which a transition should take place. It encodes
two data items, from which an elapsed time for the transition must be calculated. It is one octet in
size and its 8 bits are used as follows:

back to contents

17

Field Size
(bits)

Definition

Default Transition Number of Steps 6 The Number of Steps

Default Transition Step Resolution 2 The resolution of the Default Transition
Number of Steps field

The four values which transition step resolution may take represent 100 milliseconds (0b00), 1 second
(0b01), 10 seconds (0b10), and 10 minutes (0b11), respectively. The transition time represented by
this state is calculated by multiplying the number of steps and the time value represented by the step
resolution. Durations from 0 seconds (immediate) to 10.5 hours can be encoded with the transition

time state.

The word “steps” might suggest that transitions should take place in a series of discreet increments/
decrements. This is not the case. The steps and step resolution fields are solely there to allow the
calculation of the elapsed time of the transition. How the change manifests itself in user-visible ways
is a product issue, and how the transition takes place in code is an implementation detail.

Note that some level control requirements cannot be completely met by the simple, generic level
models. Lighting is a case in point. Human perception of brightness in lights is not linear, and so more
specialized models for controlling the brightness or level of lights are provided in a Bluetooth mesh
network. We will review the lighting models later in this paper.

4.3 The Generic Power OnOff Client, Server, and Setup Server Models

At a Glance

These models enable the initial state that a device is in immediately after powering up to be
configured. For example, it may be preferable that the initial state of a device when powered up
is that it is off, as indicated by a value of 0x00 in the generic onoff state. Alternatively, for another
product, it may make more sense for the initial state to be on, with generic onoff set to 0x01.

About These Models

The generic power onoff server model has a single state, generic on powerup which has three values
defined with meanings shown below in Figure 6 from the Bluetooth Mesh Models Specification.

Figure 5 - Transition Time (from the Bluetooth Mesh Model Specification)

back to contents

18

Value Description

0x00 Off. After being powered up, the element is in an off state.

0x01 Default. After being powered up. the element is in an on state and uses default
state values.

0x02 Restore. If a transition was in progress when powered on, the element restores
the target state when powered up. Otherwise, the element restores the state it
was in when powered down.

0x03-oxFF Prohibited.

This model has several relationships with other models. It extends the generic onoff server model,
and it requires the generic power onoff setup model be present. The latter model extends both
the generic power onoff server model and the generic default transition time server model. This is
depicted in Figure 7.

It may not be obvious why the
generic default transition time
server is part of this picture. The
generic on powerup state can be
used to define what action to take
when powering up, if a transition
had been in progress when
powering down. Therefore, since
this behavior is not triggered by
the receipt of a message, which
could contain the transition time
field, the generic default transition

time state must be available for use in re-establishing transitions on power up.

4.4 The Generic Power Level Client, Server, and Setup Server Models

At a Glance

These models allow control over a device element’s power to be exercised. Through relationships
with other models, such as the generic onoff server, generic level server, and generic power on
server, various state bindings allow specific power levels to be established or re-established when the
device is switched on or off or has its generic level state changed.

About These Models

Figure 8 depicts the relationships the generic power level server has with other models. It extends any
model depicted with an arrow directed from this model to another model, directly or indirectly. It is
extended by a model that has an arrow going to the generic power level server.

Figure 6 - Generic OnPowerUp states

generic onoff server

generic default transition time servergeneric power onoff server

generic onoff setup server

Figure 7 - Generic Power OnOff Server and Associated Models

back to contents

19

The best way to understand the purpose and behavior of these models, especially the generic power

level server model, is to understand the states the server contains.

The generic power level server model contains one state, the generic power level state. It also inherits
generic onoff and generic level from the models it extends.

Generic power level is a composite state, meaning it consists of a number fields, each of which is a
state in its own right. These are shown and described in Figure 9 .

State Description

Generic power actual Sets element’s power level as a linear percentage of the maximum
available. Note that with this state set to zero, the device is permitted to
continue to be sufficiently powered for wireless communication to remain
available. It is like putting the device into standby mode.

Generic power last Records the last known value of generic power actual, so the last power
level can be restored when the device is switched on. This behavior is
governed by a state binding with the generic onoff state and whether or
not the generic power default state is zero.

generic onoff server

generic power onoff setup server

generic power level setup server

generic level server generic default transition time server

generic power level server

generic power onoff server

Figure 8 - Generic Power Level Server and Associated Models

generic power defaultgeneric power last generic power rangegeneric power actual

generic power level

Figure 9 - The Composite Generic Power Level State

back to contents

20

State Description

Generic power default If this state has a non-zero value when the device is switched on and the
generic onoff state changes to 0x01, the power level is restored to the
value of this state.

Generic power range Contains the minimum and maximum power levels the device can be
set to as a percentage of the maximum level the device is capable of
outputting.

State Bindings

A number of state bindings are defined, and these have a variety of behaviors to be achieved. Readers
should review the Bluetooth Mesh Model Specification for full details and definitions of these
state bindings.

They can be summarized as follows:

State Bound to State Description

Generic power actual Generic level Generic power actual = generic level + 32768

Generic level Generic power actual Generic level = generic power actual – 32768

Generic power actual Generic onoff Determines the value of the generic power
actual state depending on combinations of
the values of the generic onoff, generic power
last, and generic power default states. See
specification for details.

Generic power actual Generic onpowerup Determines the value of the generic power
actual state during the physical powering up of
an element. Depends on combinations of the
values of the generic onpowerup, generic power
default, generic power last, and generic power

default states. See specification for details.

Generic power actual Generic power range Establishes minimum and maximum values for
generic power actual when it is not zero.

4.5 The Generic Battery Client and Server Models

At a Glance

The generic battery server model represents an element that is battery powered. The client model
can be used to monitor the state of battery-powered elements.

About These Models

The generic battery server model is a root model that contains a single state that messages may
act upon: the generic battery state. This state contains four values that provide information about a
battery’s current level, time to charge and discharge, and various other aspects of the battery, such as
whether or not it is removable.

back to contents

21

The client and server models produce or consume generic battery get and generic battery status

messages. The server must implement support for both message types. For the client, support for
the get message is optional, and support for the status message is mandatory if get is supported,
otherwise it is optional.

4.6 The Generic Location Client, Server, and Setup Server Models

At a Glance

Sometimes it is useful to know where a device is in your network. The generic location models allow
you to do that. The generic location server model allows a node’s location to be encoded in various
ways and queried or reported to clients using associated messages. Want to know where a particular
device is? Ask it.

About These Models

The generic location models center around the generic location state, so that is a good place to start
when looking at what these models make possible. The generic location state consists of a series of
fields, which between them allow the following information about a node’s location to be encoded.

Global location - This is expressed as a longitude and latitude, using the WGS84 World Geodetic

System and an altitude in meters above the WGS84 coordinates.

Local location - This is expressed as a number of decimeters North and East, relative to some
externally defined local coordinate system. A local altitude is also available, and this is a measure
of altitude relative to the global altitude, also measured in decimeters.

Floor number - This field contains the floor number that the node is found on in a building.
It is encoded in a special way, usually with a +20 delta. So, the encoded floor number value 22
represents the second floor in the building. Some special values are defined too. 0x00 represents
floor -20 or below. 0xFC represents floor 232 or above. The ground floor might either be floor 0
or floor 1 according to local conventions and the special values 0xFD and 0xFE represent these
two possibilities.

Uncertainty - This field contains 16 bits of information. It can indicate whether the node is
stationary or moving. If it is a mobile device, the time since its position was last updated is
available. The precision of location measurements is also encoded in this field and ranges from
0.125 meters to 4096 meters.

The generic location server model requires the generic location setup server model to be present. The
generic location setup server model allows the generic location state to be updated using generic
location global set [unack] and generic location local set [unack] messages. The generic location

server model supports get and status messages only, and so is effectively a read-only model. Devices
that implement the generic location server model can either report their location on demand, when
they receive a generic location local get message or a generic location global get message, or they
can report it in a proactive way by publishing generic location local status and generic location global

status messages.

back to contents

22

4.7 The Generic Default Transition Time Client and Server Models

At a Glance

State changes can either be instantaneous or they can take place over a specified period of time.
There are two ways in which a non-instantaneous state change can be initiated. Many message types
support an optional field called transition time and, if included in a message, this will determine the
time it takes for a state change to be executed. In addition, the generic default transition state, which
might be available in the optional generic default transition time server model, can also be a source of
transition time information for state changes.

About These Models

These are simple models with the usual get, set, set unacknowledged, and status messages defined.
The generic default transition time state that these messages act upon has already been introduced
and explained in the section (2) on the generic level models.

4.8 The Generic Property Client and Server Models

At a Glance

As explained earlier, the property models allow lists of arbitrary numbers of properties to be
associated with a device. Properties are grouped in different models so that different user groups —
the manufacturer, administrator, and standard user — only have access to permitted properties. It
is also possible for a property server model to find a client that is capable of consuming and using a
particular property type. Collectively, the property models provide a generalized data storage and
communication mechanism that can accommodate a wide range of data values and types without
models themselves needing to be changed.

About These Models

The specific models that deal with Bluetooth mesh properties are as follows:

Generic manufacturer property server

Generic admin property server

Generic user property server

Generic property client

Generic client property server

The manufacturer, admin, and user property servers hold those properties to which manufacturer,
administrator, and standard users should have some level of access. Access to each of these three
server models is controlled by the user’s client device needing to possess the application key bound
to the model that the user wishes to access. Access to specific properties in a model is controlled
by a field in the property state that determines whether read only, write only, or read-write access is
granted by the property represented by the state.

The manufacturer, admin, and user property servers contain similar states called generic

manufacturer property, generic admin property, and generic user property. Each has three fields
containing the property ID, access flags (read, write, read-write), and the property value.

back to contents

23

The fourth server model, the generic client property server model, allows applications, such as
the provisioning and configuration application, to find clients that are capable of consuming and
processing particular properties. For example, it might be desirable to find a device with a user
interface that can display a particular temperature property. The generic client property server

contains a list of one or more generic client property states, each of which contains the ID of a
property supported by the client.

back to contents

24

5.0 A Guided Tour of Lighting Models

Lighting can be surprisingly sophisticated and therefore needs specialized Bluetooth mesh models
to meet its sometimes complex requirements. The Bluetooth mesh lighting models allow control
over the on/off state of lights, their lightness, color temperature, and their color (using various color
spaces). Importantly, they also provide a highly sophisticated software-based lighting controller that
can enable smart lighting automation scenarios. As Figure 10 shows, there are 16 lighting models
related to 5 distinct aspects of lighting.

Before beginning the guided tour of the models, consider the nature of lights and the various ways
they can be controlled.

5.1 Lighting Overview

Controlling Lights

Lights are often controlled manually by
pressing buttons, turning knobs, or pushing
sliders. But they can also be controlled
by sensors, indicating to the lights that
there is someone in the room or that the
ambient light level has become low because
it is getting later in the day or because a
cloud has obscured the sun. Lights can be
controlled by timers too.

The generic onoff and generic level
models detailed in section 4 could be used
to control some of the basic attributes
of a light, but people perceive lighting
conditions in more complex ways, with
brightness or lightness perceived according
to a non-linear scale.

Lights have more attributes than their on/off
state or their lightness that we might wish to control. Some lights can have their color controlled, and
there are a number of ways of modelling color in lights.

Smart Lighting

Smart buildings require smart lighting. Smart lighting can be controlled by manual actions taken by
building occupants, but, more importantly, a smart lighting system is informed by sensors and uses
control algorithms to achieve self-optimizing behaviors that make the system efficient, cost effective,
and pleasing to the people that use the building. The Bluetooth mesh lighting models include a
particularly special set of models, such as the Light LC models that provide sophisticated, automated
control of lights.

lighting
· light lightness client
· light lightness server
· lightness setup server
· light CTL client
· light CTL server
· light CTL setup server
· light HSL client
· light HSL server
· light HSL setup server
· light xyL client
· light xyL server
· light xyL setup server
· light LC client
· light LC server
· light LC setup server

Figure 10 -The Lighting Models

back to contents

25

5.2 Lighting Concepts

To appreciate the lighting models, it helps to understand certain concepts from the world of lighting.
The key ones are as follows:

Color Temperature

The color temperature of a light source is what leads people to describe colors as either cool or warm.

It has a more scientific definition that relates to the temperature of the light radiated by the object,
measured in Kelvin. Surprisingly, lower color temperatures are those we describe as warm and higher
temperatures as cool. In commercial lighting applications, warmer color temperatures are often used
to promote relaxation and cooler temperatures to enhance the concentration of occupants working in
the room.

Color-Tunable Light
Color-tunable light (CTL) is a capability of
some lights that allows color temperature to be
controlled via two dimensions: lightness and
color temperature.

Hue

Colored light has a number of properties, of
which hue is one of the main ones. Typically,
hue measures the angular position of a color in
a color wheel.

Lightness

Lightness is the term used to refer to the
perception of brightness.

Saturation

Saturation is another property of colored light
and measures the ratio of an object’s color to
its lightness. A given color with a high lightness
is said to be less saturated than the same color
with low lightness.

Color Models

A color model, not to be confused with a Bluetooth mesh model, is a mathematical way of
representing colors. There are several color models in popular use, each with its own strengths
and weaknesses.

HSL (hue, saturation, lightness) represents colors using a cylindrical representation. The angular
position in the circular cross section of the cylinder represents the hue, the distance from the center
of this circle represents the saturation, and the distance from one end of the cylinder represents the
lightness, with one end representing black and the other white.

460

480

500

520

540

560

580

600

620

X
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11 - CIE1931 is especially popular in professional
lighting applications

back to contents

26

The RGB (red, green, blue) color model is an additive model where given levels of red, green, and
blue light are mixed to produce a color that people can perceive.

The CIE1931 color space defines the mathematical relationships between wavelengths of light and
perceived colors in vision. Just like RGB and HSL, colors in this model are defined by three values: x,
y, and Y. x and y are coordinates of the color on a color chart, and Y measures the luminous intensity.
CIE1931 is especially popular in professional lighting applications.

Each color model has an associated color space that is a set of colors that the model allows to
be reproduced.

5.3 The Light Lightness Client, Server, and Setup Models

At a Glance

These models allow the lightness of a lamp to be controlled by mesh messages and events, such as
powering up the device.

About These Models

Figure 12 depicts the relationships the light lightness server model has with other models. It extends
any model depicted with an arrow pointing to it from this model directly or indirectly. It is extended
by a model which has an arrow going to the light lightness server.

A number of states are involved
in the control of lightness and
contained within these models.
Understanding these states
will provide a good start to
understanding the models.

The light lightness state is a
composite state, consisting of the
light lightness linear, light lightness

actual, light lightness last, and light

lightness default states.

There are two distinct ways that
lightness may be changed using

these models. The light lightness linear state provides control along a linear scale, but which people
will perceive as non-linear lightness changes. Conversely, the light lightness actual state provides
control along a non-linear scale that produces lightness changes perceived by people as being linear.

A range of supported lightness levels, from a minimum level to a maximum level, may be set for the
server using its setup model, which contains the light lightness range state, a composite state that
includes the light lightness range min state, and the light lightness range max state. The configured
range is used in lightness state transitions to ensure only valid, supported values are used by
the model.

generic onoff server

generic level servergeneric power onoff server

light lightness server generic power onoff setup server

light lightness setup server

Figure 12 - Light Lightness Server and Associated Models

back to contents

27

In addition to states concerned with controlling lightness on a given scale, there are states concerned
with restoring the lightness level when the device is switched back on or powered up. These are the
light lightness last state and light lightness default state, both of which are involved in the functioning
of the generic power onoff server model.

State Bindings

Light lightness actual and light lightness linear are related by two-way bindings. If one changes then
the other must be recalculated.

Light lightness actual is also bound to the generic level, generic onoff, generic onpowerup, and light

lightness range states. The precise details of these bindings are defined in the specification, but the
general nature of these bindings should be intuitive enough. For example, changing the generic level
in a light that has the light lightness server model will change its lightness states as well.

5.4 The LC Client, Server, and Setup Models

At a Glance

Collectively, the lighting control (LC) models form a lighting controller: a software component that
allows sophisticated, sensor and user-driven lighting control to be set up. Occupancy and ambient
light sensors are catered for so that techniques like daylight harvesting can be employed. As the
state of the lighting controller changes, the light lightness state of the light under control progresses
through a series of levels, with the transition from one to another governed by configurable timing
parameters so that changes are not abrupt and feel natural to building users.

Decentralized Control
Legacy lighting control requires the installation of dedicated, physical devices, called controllers,
sitting in between sensors and lights. This is called a centralized lighting control architecture. See
Figure 13.

Controller
(Hardware)

Lights

Sensors

Figure 13 -The Lighting Models Legacy, Centralized
Lighting Control

Sensors
Lights

with integral controller software models

Figure 14 -The Bluetooth Mesh Decentralized Controller
Architecture

back to contents

28

Bluetooth mesh lighting control is entirely software based and supports a superior, decentralized
controller architecture with the controller embedded in the lights rather than in physically separate
hardware devices. There are cost advantages and, as described in an article on Bluetooth mesh and
scalability, significant performance advantages to this approach. Figure 14 illustrates the Bluetooth
mesh decentralized controller architecture.

Of States and States Machines

The terms controller and lighting controller are used in this paper as an informal shorthand for an
element that has the light LC server and light LC setup server models. The aggregate capability given
by these models is known as a lighting controller. The light LC client model is used by elements that
are able to configure a light LC setup server model on a remote device.

The light LC server is unusual in that it consumes messages from a model that is not part of the same
family, namely the sensor server model. This is so that sensors, such as ambient light and occupancy
sensors, can provide input to the controller’s operation.

The concept of a finite state machine is important to understanding the way the Light LC models
work to form a lighting controller. Indeed, the Bluetooth Mesh Model Specification approaches the
definition of lighting control in a different way to that of the other collections of models. A finite state
machine for lighting control is presented and much of the specification refers to that state machine.
The state machine defined in the specification is an abstraction that defines how the overall lighting
controller works. Sitting underneath this are the mesh models and their mesh states, and it is these
mesh states that the finite state machine acts upon and is informed by. The use of the word state in

these two contexts, that of the overall lighting controller and that of a mesh state data item inside a
mesh model, can be a little confusing at first, but it makes perfect sense if you keep the context in
mind when reading this section. In this paper, the term mesh state refers to a state that is part of a
mesh model, and the term controller state refers to a state that is part of the lighting controller finite
state machine.

The following controller states are defined as part of the lighting controller’s finite state machine.
Note that this information is a summary of section 6.2.5.1 of the Bluetooth Mesh Model Specification:

State Machine State Meaning

Off The lighting controller is disabled and light lightness is not controlled.

Standby The lighting controller is enabled, but occupancy state changes reported
by sensors are ignored.

Fade on Occupancy has been detected, and the lightness level of lights are in the
process of transitioning to the level defined in the light LC lightness on

mesh state.

back to contents

29

State Machine State Meaning

Run Lights are now at the lightness level defined by the light LC lightness

on mesh state, and lightness stays at this level until a timer expires and
causes a transition to the Fade controller state to take place. Occupancy
events reset the timer. The controller transitions to and stays in the Run
controller state when a room is occupied, and it will stay in that state as
long as the room continues to be occupied.

Fade The room is regarded as no longer occupied, so the lightness level starts
to transition to the level defined by the light lightness prolong mesh state.

Prolong The Prolong controller state can be thought of as an intermediate state,
with a corresponding, intermediate lightness level to which lights fade
after occupancy has ceased to be detected. On entering the Prolong
controller state, a timer is started. When the timer expires, the controller
will start to transition into the next controller state. One example that
illustrates the purpose of the Prolong controller state is to avoid abruptly
plunging an area of an open-plan office into complete darkness when
there are still people working at the other end of the office, which is
monitored by different occupancy sensors.

Fade standby auto After the Prolong controller state’s timer expires, the controller switches
into the fade standby auto state and transitions the lightness level to that
defined by the light lightness standby mesh state over some
transition period.

Fade standby manual In this state, the controller also transitions the lightness level to the level
defined by light lightness standby, but switches into this state in response
to a manual event, such as receipt of a mesh message like light LC light

onoff set, which switches the lights off.

Figure 6.7 of the Bluetooth Mesh Model Specification provides a diagrammatic reference to the
controller’s finite state machine, showing the set of controller states, the valid transitions between
states, and the events that trigger them.

Figure 6.4 from the specification shows an example of the controller states being transitioned through
and the effect this has on lightness levels at each stage. It is repeated here in Figure 15

for convenience.

Transition Times

Each of the four fade states are transitional in that the system is in the process of transitioning to
another state. For example, the Fade On controller state is a state the controller will be in whilst
transitioning from the Standby controller state to the Run controller state and corresponding lightness
level. How long it takes to transition from the current lightness level to the target lightness level,
defined for the next state, can be specified in the transition time optional field in relevant mesh

back to contents

30

messages, or it can be taken from mesh states, such as light LC time fade on.

See section 6.2.5.13.1 of the Bluetooth Mesh Models Specification for details of mesh states that
define lighting controller state transition times.

The Details

The LC client, LC server, and LC setup server models form the most sophisticated and, in some ways,
complex family of models defined for Bluetooth mesh. They sit at the heart of the support Bluetooth
mesh has for advanced commercial lighting systems. This paper has reviewed the concepts governing
the operation of these models and how they form a lighting controller, but not looked closely at the
underlying mesh states or even the models themselves. There are a significant number of mesh states
and properties, some of which allow a lighting controller to be configured to behave in a number
of ways. If you are happy with the introduction to the Bluetooth mesh lighting controllers that this
section has provided, your next step should be to drill down to the detail provided in the Bluetooth
Mesh Model Specification.

5.5 Light CTL Client, Light CTL Server, Light CTL Temperature Server, and
Light CTL Setup

At a Glance

These models allow the control of a tunable, white light source. Tunable white lights offer control over
the color temperature of a white light and leverage the most recent research into human biological
and cognitive responses to light.

About These Models

Figure 16 depicts the relationships the light CTL server model has with other models.

Figure 17 shows the simpler light CTL temperature server model that extends the generic level server

model only.

Off Standby Fade On Run Fade Prolong Fade Standby Standby

Timer

State

Lux Level/Lightness
Standby

Lux Level/Lightness
Prolong

Lux Level/Lightness
On

Lux Level/Lightness

Time

Light FC
Time

Fade On

Light FC
Time
Run

Light FC
Fade

Light FC
Time

Prolong

Light FC
Time
Fade

Standby

Figure 15 -Lighting controller state transitions

back to contents

31

Central to the light CTL models is a composite state called the Light CTL state that belongs to the
light CTL server model. It consists of the 6 sub-states shown in the table below.

State Description

Light CTL temperature Sets the color temperature level.

Standby Light CTL
temperature range

Sets the maximum and minimum color temperature that an element is
capable of supporting.

Light CTL temperature
default

A default color temperature level for use when powering up in a way
determined by the generic onpowerup state.

Light CTL delta UV Some lights allow the color temperature to be varied by some delta away
from the usual curve that color temperatures are measured from (known
as the black body locus). This technique allows certain colors, such as
pinks, to accentuated. This state allows a delta value to be set for this
purpose.

Light CTL delta UV
default

A default delta UV value for use when powering up in a way determined
by the generic onpowerup state.

Light CTL lightness Controls the lightness of a tunable white light source. Comparable to the
light lightness state, but for tunable white lights whose color temperature
can by definition be varied.

The light CTL temperature server model contains only the light CTL temperature state plus the generic

level state due to its extension of the generic level server model. It is simpler than the light CTL server

model, but it may not be obvious why the light CTL temperature state appears in both these models.

The answer is that color-tunable light can be changed by manipulating two dimensions: lightness

generic onoff server

generic level servergeneric power onoff server

light lightness server

light CTL server

light CTL setup server

Figure 16 - Light CTL Server and Associated Models

generic level server

light CTL temperature server

Figure 17 - Light CTL Temperature Server

back to contents

32

and temperature. It was a requirement that each of these be controllable by making changes to the
generic level state or, in other words, through a state binding with that state. This implies there must
be two distinct instances of the generic level server model to support the two distinct bindings with
the generic level state, and the only way to accomplish this is to have two elements in the node’s
composition; the first allows light CTL lightness to be modified via the generic level state, and the
second allows the light CTL temperature state to be controlled via generic level state changes.
The specification designates one element as the main element and the other as the temperature

element. Developers must ensure their node composition reflects this dual-element approach when
implementing if independent control via level changes is needed for the two dimensions of CTL.

The Light CTL client model provides access to the states in both the light CTL server and light CTL

temperature server models and includes support for the usual set, get, and status message types for
each state. Check the section 6.6.2 of the specification for details.

State Bindings

Various state bindings are defined for the states involved in these models, and some of the more
interesting ones have been mentioned already. Generic level can be used to control the two
dimensions of CTL; power-up events can be used to restore CTL states via bindings with the generic

onpowerup state. CTL temperature values are restricted by a binding with the CTL temperature range

state, which is involved in various state binding calculations to ensure values do not fall outside the
permitted range.

5.6 The Light HSL Client, Server, and Setup Models

At a Glance

These models provide control over color-changing lights, using the hue/saturation/lightness (HSL)
model of color representation.

About These Models

Figure 18 depicts the relationships
the light HSL server model has
with other models.

The most important Bluetooth
mesh state involved in these
models is the light HSL state. It is a
composite state consisting of sub-
states light HSL hue, light HSL hue

default, light HSL saturation, light

HSL saturation default, and light

HSL lightness.

Light HSL hue represents the hue
as a 0-360-degree angle around a
color wheel.

generic onoff server

generic level servergeneric power onoff server

light lightness server

light HSL server

Lorem ipsumlight HSL setup server

Figure 18 - Light HSL Server and Associated Models

back to contents

33

Light HSL saturation represents
saturation as a 16-bit value with
0x0000 representing the lowest
perceived saturation level and
0xFFFF the highest
perceived level.

Light HSL lightness measures
lightness on a perceptually
uniform scale (see Figure 19).

These states within the light HSL server model can be controlled by messages from the corresponding
client model in the usual way. Additional messages, light HSL target get, and light HSL target status

allow all three of light HSL lightness, light HSL hue, and light HSL saturation to be queried and
reported on by a single message type. If a transition of any of these states is in progress at the time
the status message is to be produced, a remaining time field is included in the message to indicate
how long it will be before the transition to the target state has been completed.

State Bindings

Bindings are defined such that HSL color can be controlled via the generic level of an element and so
that the color can be restored to some state when the element is powered up. In addition, there is a
relationship between light lightness actual and light HSL lightness, which makes sense given HSL has
lightness as one of its dimensions. In brief:

Light HSL hue is bidirectionally bound to generic level, to generic onpowerup, and to light HSL

hue range.

Light HSL saturation is bidirectionally bound to generic level, generic onpowerup, and light HSL

saturation range.

Light HSL lightness is bidirectionally bound to light lightness actual.

5.7 The Light xyL Client, Server, and Setup Models

At a Glance

These models provide control over color changing lights, using the CIE1931 model of
color representation.

About These Models

Figure 20 depicts the relationships the light xyL server model has with other models, and it is similar
to the relationship that the light HSL server model has with other models, as shown in Figure 18.

Y

65535
L = 65535

The Perceived lightness of a light (L) is approximately the square root
of the measured light intensity (Y):

Where L is the perceived lightness and Y is the measured light
intensity (from 0 to 65535).

Figure 19 - Relationship Between Perceived Lightness and Measured
Light Intensity

back to contents

34

Reviewing the light xyL state
reveals much of what you need
to know about these models. It is
a composite state that consists
of states light xyL x, light xyL x

default, light xyL y, light xyL y

default, and light xyL lightness.

These states and the messages
provided by the client and server
model allow the coordinates
of color, according to the
CIE1931 color space chart, to be
manipulated and defaults to be
used when powering up the device
to be set.

The light xyL x and light xyL y states represent coordinates in the range 0 to 1 and are transformed to
a 16-bit state value by the formulae:

CIE1931_x = (Light xyL x) / 65535

CIE1931_y = (Light xyL y) / 65535

The special state values 0x0000 and 0xFFFF represent the CIE1931 coordinate values of
0 and 1, respectively.

State Bindings

Light xyL x is bound to generic onpowerup and light xyL x range. This means the x coordinate can be
restored when powering up the device and state binding calculations will keep coordinate values
within the valid range for this device. Light xyL y has similar bindings.

Lights may implement the server models for both HSL color control and CIE1931 (i.e. light HSL server

and light xyL server). When this is the case, indirect state bindings will exist between the light xyL

state and the light HSL state. This means that lights can be controlled by clients of either type
of model.

generic onoff server

generic level servergeneric power onoff server

light lightness server

light xyL server

light xyL setup server

Figure 20 -Light XYL Sserver and Associated Models

back to contents

35

6.0 A Guided Tour of Sensor, Scene, and Time Models

Bluetooth mesh scenes define entire collections of settings for an environment, optimizing it for a
particular purpose. For example, you could choose to define a scene that puts a room into the perfect
state for a presentation. Switching to a particular scene can be triggered by sensors or a
time schedule.

Sensors play a critical role in many mesh
networking applications, including, but
not limited to, that of the smart building.
They detect and report events like the
changing occupancy status of rooms, and
they measure attributes of the environment,
sharing this data with other devices.

Sensor data can be used to influence or
control the operation of one particular type
of device, or it can be used to change the
state of many devices of many different
types, all in one go.

As an example of the first of these cases,
the lightness of lights in a room can be
dynamically adjusted in response to
changing ambient light levels, as reported
by ambient light sensors.

As an example of the second case, consider
what we might want to happen when a person walks into a previously empty room. We might want
the lights to switch on, the heat to be turned up slightly, and the blinds to open. A Bluetooth mesh
network makes this scenario possible through the use of scenes. Scenes are collections of memorized
model states that are identified by a scene number. Devices can be instructed by a Bluetooth mesh
message to switch to the states that belong to a specific scene. This is how mass changes, affecting
many different types of devices, can be orchestrated in response to an event like an
occupancy change.

Some state changes, including scene switches, can be executed according to a time schedule. A
Bluetooth mesh network includes a scheduler that is responsible for this behavior. To work though,
nodes must have access to a common, accurate system time. Consequently, there are time models,
states, and messages, as well as some special roles nodes may play regarding the propagation of time
across the network.

6.1 The Sensor Client, Server, and Setup Models

At a Glance

These models provide a generalized approach to sensor operation in a Bluetooth mesh network and

back to contents

sensors, scenes and time
· sensor server
· sensor setup server
· sensor client
· time server
· time setup server
· time client
· scene server
· scene setup server
· scene client
· scheduler server
· scheduler setup server
· scheduler client

Figure 21 - The Sensor, Scene, and Time-Related Models

36

allow any type of sensor to communicate sensor readings to other nodes in the network. The sensor
setup server allows the sensor and format of its data to be configured.

About These Models

The sensor models make extensive use of properties within a relatively small number of states.

Properties differ from states in that they contain both an identifier and a value. The identifier tells us
what type of data the property contains so that it is self-describing. States, on the other hand, have
no explicit type identifier, and it is the model or message the state is contained within that tells us the
data’s state.

Leveraging properties has allowed the three sensor models to accommodate any type of sensor and
sensor data, rather than requiring different models, messages, and states for each conceivable type
of sensor that might be part of a network.

An element that implements the sensor server model must also have the sensor setup server model,
which extends it. The sensor client model is not related to other models and can be used standalone.
Figure 22 illustrates the relationship between the three sensor models:

Sensor States

The sensor models are defined around a single composite state called the sensor state. This is a fairly
complex state whose primary parts are distributed across two models, the sensor server model and
the sensor setup server model, as shown in Figure 22.

The complete breakdown of the sensor state is shown in Figure 23 on the next page.

Sensor Client
0x1102

Sensor Server
0x1100

Sensor Descriptor

Sensor Data

Sensor Setting

Sensor Cadence

Sensor
Setup Server

0x1101

Interaction via Messages Setting a state

Figure 22 - The Sensor, Scene, and Time-Related Models

back to contents

37

The sensor data state
contains an array of
property ID / raw value
pairs. The Bluetooth
mesh device properties
specification defines
properties and the
characteristics to
which they relate.

In some cases, a
referenced property
has a simple value that
may be acted upon
using sensor model
messages, such as
sensor get, which
return the sensor data
state value in a sensor

status message. Some
properties define
arrays of data, suited
to creating histograms,
and individual columns
from within this tabular
data can be accessed
with messages like
sensor column get,
which returns a sensor

column status message.

The sensor descriptor

state contains
information that
describes the sensor

data available from this sensor. It is not expected to change over the entire lifetime of the sensor.

The tolerance fields provide an indication of the magnitude of possible errors in measurements
reported by the sensor. The sensor sampling function field indicates the type of function applied
to measured sensor values. For example, some sensor data values are instantaneous snap shots
of the measured phenomena. Or, perhaps, an averaging function, such as the arithmetic mean, is
being applied to measured values and it is this that is contained within the sensor data state. Where
a function, such as an averaging function, is being applied, the sensor measurement period field

sensor

sensor
descriptor

sensor
property ID

property ID #1
sensor

property ID
sensor

property ID

fast cadence
period divisor

status trigger
type

status trigger
delta down

status trigger
delta up

status min
interval

fast cadence
low

fast cadence
high

sensor setting
property ID

sensor setting
access

sensor setting
raw

raw value #1

raw value #2

raw value #n

property ID #2

property ID #n

sensor positive
tolerance

sensor negative
tolerance

sensor
sampling
function

sensor
measurement

period

sensor
update interval

sensor
data

sensor
setting

sensor
cadence

Figure 23 - The Sensor State

back to contents

38

indicates the time period over which measurements are being averaged, and the sensor update

interval indicates the frequency with which each measurement is made by the sensor.

Sensors often have configurable settings, such as sensitivity thresholds. The sensor setting state
contains a list of such settings and their values. Each member of the list consists of the ID of the
property to which the setting applies, the ID of a property that identifies the setting itself, an
indication of whether the setting is read only or may also be written to, and the raw setting value
itself. For example, occupancy sensors often have motion-sensitivity settings that allow the sensor
to be configured so that false alarms, triggered perhaps by small furry animals, are not created.
Property 0x0043 Motion Threshold allows the configuration of the required sensitivity level in
this case.

The sensor cadence state allows the frequency with which a sensor publishes status reports relating
to each sensor data type (identified by property ID) to be configured. The rate of publication can
be configured to vary according to various conditions. When the value falls within a configured
range, the publication rate can be increased. If particularly large increases or decreases in the sensor
data value are measured, the reporting rate can also be increased. In each case, the fast cadence

period divisor indicates by how much the rate of publication should be increased when any of these
circumstances arise.

Sensors and Other Models

The light LC server model can consume sensor status messages. This allows sensors, such as ambient
light sensors and occupancy sensors, to be used with important lighting control scenarios. The
lighting models are explored in a previous section of this paper.

6.2 Time, Scenes, and Scheduling

At a Glance

Bluetooth mesh scenes allow collections of devices of various types to be instructed to load specific
settings simultaneously. This allows changes that affect many types of devices to be orchestrated all
in one action. Scene selection can be triggered by a Bluetooth mesh message or via a time schedule.
In support of scheduled operations, Bluetooth mesh makes it possible for an accurate system time to
be propagated to nodes across the network.

Scenes and Scene Registers

A scene is a uniquely numbered list of states with associated state values that is split up and
distributed across a number of elements within nodes in the network. Each element that uses scenes
has a scene register, which is a state contained within the scene server model. The scene register is a
table with each row identified by a scene number. Each row in the table also contains an object that
acts as a container for all of the states and values that need to be memorized as part of that scene.
The specific structural details for this container object are not specified and are left to
the implementor.

The aggregate of all rows with the same scene number from all nodes in the network is a
unique scene.

back to contents

39

Example scene registers for elements within two types of node are shown in Figure 24 and Figure 25.

scene number state container

10 generic onoff=0,light lightness actual=0,light HSL hue=0x42f4f4

Standby13 generic onoff=1,light lightness actual =65535,light HSL hue=0x42f4f4

scene number state container

10 generic level=100

Standby13 generic level=0

The scene models define messages that the scene client model can publish to store, recall, or delete
scenes from within receiving elements’ scene registers.

In an example building and network, the requirement might be that when a room is occupied, lights
are switched on and set to a given lightness level and hue, and the blinds are opened. An occupancy
sensor could publish a scene recall message which specifies that scene 13 be activated when the
room becomes occupied, and similarly, publish a scene recall message, activating scene 10 when the
room becomes unoccupied. The example scene register in Figures 24 and 25 should illustrate how, in
the first case, scene 13 would switch the lights on, set their lightness to full brightness, their color to
a subtle blue color, and cause the blinds to open (level 0). In the second case, switching everything to
scene 10 results in the lights being switched off and the blinds closing (level 100). All of these changes
happen simultaneously in response to the scene client model in the sensor publishing a single scene
recall message.

A Bluetooth mesh network can have up to 65,535 distinct scenes defined for it. Individual elements
can store state values for up to 16 distinct scenes in their scene register, which should be more than
enough for any type of device.

Time and Time Propagation

Times in a Bluetooth mesh network are based on the International Atomic Time (TAI) standard. Three
models, the time client, time server, and time setup server are defined. When the time server model is
present in an element, the time setup server model must also be present, per the usual usage pattern.

The time server model contains a single state called time. It contains a TAI time, information about
uncertainty, and the degree to which the time can be trusted, plus information about time zone
offsets. The time setup server adds a further state called time role. Time roles define whether or not
an element participates in the propagation of time state values across the network and, if so, how.
Four distinct roles are defined and represented by the time role state. They are listed in Table 5.2 of
the Bluetooth Mesh Model Specification, which is repeated here for convenience:

Figure 24 - Example Scene Register for an Element of a Light

Figure 25 - Example Scene Register for the Blinds

back to contents

40

Value Role Description

0x00 None The element does not participate in propagation of
time information.

0x01 Mesh Time Authority The element publishes Time Status messages but
does not process received Time Status messages.

0x02 Mesh Time Relay The element processes received and published Time
Status messages.

0x03 Mesh Time Client The element does not publish but processes received
Time Status messages.

0x04-0xFF Prohibited

The time setup server model defines messages that allow time role to be maintained in an element.

Time server models respond to messages relating to their time state in the usual way. But to
propagate messages across the network, time servers with the mesh time authority role publish the
time periodically in accordance with the publish period state, which is part of the configuration server
model. Elements with the role mesh time relay also publish unsolicited time status messages, but
they do so only when one is received from a mesh time authority. Mesh time clients are end points in
the time propagation process, receiving and storing time data from time status messages, but not
publishing or relaying them. It is in this way that time is distributed across the network.

Scheduling

Certain types of state changes can be scheduled to take place at a specific time every day, on a
specific day of the week. This is made possible by a set of models, the scheduler server, scheduler

setup server, and the scheduler client. The scheduler server extends the scene server model, and the
scheduler client model extends the scene server model so the ability to schedule actions that change
state is dependent on the scene models being implemented.

The scheduler server model contains a tabular state called the scheduler register. This state allows
up to 16 sets of scheduling data to be stored, each consisting of scheduling time and frequency
information, an action to take, and a scene number (optional). It therefore allows up to 16 state
changing actions to be scheduled. Actions allowed switch the element on, switch it off, or recall the
specified scene.

The scheduler offers a great deal of flexibility in how actions are scheduled, and every action can
have an associated transition time specified for it as well.

back to contents

41

7.0 Summary

This ends the technical overview of the Bluetooth mesh models. You should have a good
understanding of how the generics support the use of fundamental capabilities that many device
types possess, how commercial lighting requirements are met by the lighting models, and how
sensors can be used to inform other devices of environmental data, perhaps automated responses as
a result. Finally, you should know how time plays a role in a Bluetooth mesh network, with a
scheduler available to trigger state changes on a scheduled basis.

The Bluetooth mesh models are the building blocks for interoperable mesh products and the means
by which diverse requirements can be met in smart buildings and elsewhere.

7.1 Additional Resources

The following resources are recommended to help you learn more about Bluetooth mesh:

Mesh Technology Overview A short technical introduction to Bluetooth mesh
technology.

Mesh Glossary of Terms A glossary of Bluetooth mesh terminology.
Mesh Developer Study Guide Self-study material with hands-on programming

exercises for developers.

back to contents

